特性阻抗的計算
簡單的特性阻抗模型:Z=V/I,Z代表信號傳遞過程中每一步的阻抗,V代表信號進入傳輸線時的電壓,I代表電流。I=±Q/±t,Q代表電量,t代表每一步的時間。
電量(來源於電池):±Q=±C×V,C代表電容,V代表電壓。電容可以用傳輸線單位長度容量CL和信號傳遞速度v來推導。單位引腳的長度值當作速度,再乘以每步所需時間t, 則得到公式: ±C=CL×v×(±)t.綜合以上各項,我們可以得出特性阻抗:Z=V/I=V/(±Q/±t)=V/(±C×V/±t)=V/(CL×v×(±)t×V/±t)=1/(CL×v)
可以看出,特性阻抗跟傳輸線單位長度容量和信號傳遞速度有關。為了區別特性阻抗和實際阻抗Z,我們在Z後面加上0.傳輸線特性阻抗為:Z0=1/(CL×v)
如果傳輸線單位長度容量和信號傳遞速度保持不變,那麼傳輸線特性阻抗也保持不變。這個簡單的說明能將電容常識和新發現的特性阻抗理論聯繫在一起。如果增加傳輸線單位長度容量,例如加粗傳輸線,可降低傳輸線特性阻抗。
特性阻抗的測量
當電池和傳輸線連接時(假如當時阻抗為50歐姆),將歐姆表連接在3英尺長的RG58光纜上,這時如何測無窮阻抗呢?任何傳輸線的阻抗都和時間有關。如果你在比光纜反射更短的時間裡測量光纜的阻抗,你測量到的是“浪湧”阻抗,或特性阻抗。但是如果等待足夠長的時間直到能量反射回來並接收後,經測量可發現阻抗有變化。一般來說,阻抗值上下反彈後會達到一個穩定的極限值。
對於3英尺長的光纜,必須在3納秒內完成阻抗的測量。TDR(時間域反射儀)能做到這一點,它可以測量傳輸線的動態阻抗。如果在1秒鐘內測量3英尺光纜的阻抗,信號會來回反射數百萬次,因此會得到不同的“浪湧”阻抗。